skip to main content


Search for: All records

Creators/Authors contains: "Cullens, Chihoko Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The satellite‐based Cloud Imaging and Particle Size (CIPS) instrument and Atmospheric Infrared Sounder (AIRS) observed concentric gravity waves (GWs) generated by Typhoon Yutu in late October 2018. This work compares CIPS and AIRS nadir viewing observations of GWs at altitudes of 50–55 and 30–40 km, respectively, to simulations from the high‐resolution European Centre for Medium‐Range Weather Forecasting Integrated Forecasting System (ECMWF‐IFS) and ECMWF reanalysis v5 (ERA5). Both ECMWF‐IFS with 9 km and ERA5 with 31 km horizontal resolution show concentric GWs at similar locations and timing as the AIRS and CIPS observations. The GW wavelengths are ∼225–236 km in ECMWF‐IFS simulations, which compares well with the wavelength inferred from the observations. After validation of ECMWF GWs, five category five typhoon events during 2018 are analyzed using ECMWF to obtain characteristics of concentric GWs in the Western Pacific regions. The amplitudes of GWs in the stratosphere are not strongly correlated with the strength of typhoons, but are controlled by background wind conditions. Our results confirm that amplitudes and shapes of concentric GWs observed in the stratosphere and lowermost mesosphere are heavily influenced by the background wind conditions.

     
    more » « less
  2. null (Ed.)
  3. The mesospheric polar vortex (MPV) plays a critical role in coupling the atmosphere-ionosphere system, so its accurate simulation is imperative for robust predictions of the thermosphere and ionosphere. While the stratospheric polar vortex is widely understood and characterized, the mesospheric polar vortex is much less well-known and observed, a short-coming that must be addressed to improve predictability of the ionosphere. The winter MPV facilitates top-down coupling via the communication of high energy particle precipitation effects from the thermosphere down to the stratosphere, though the details of this mechanism are poorly understood. Coupling from the bottom-up involves gravity waves (GWs), planetary waves (PWs), and tidal interactions that are distinctly different and important during weak vs. strong vortex states, and yet remain poorly understood as well. Moreover, generation and modulation of GWs by the large wind shears at the vortex edge contribute to the generation of traveling atmospheric disturbances and traveling ionospheric disturbances. Unfortunately, representation of the MPV is generally not accurate in state-of-the-art general circulation models, even when compared to the limited observational data available. Models substantially underestimate eastward momentum at the top of the MPV, which limits the ability to predict upward effects in the thermosphere. The zonal wind bias responsible for this missing momentum in models has been attributed to deficiencies in the treatment of GWs and to an inaccurate representation of the high-latitude dynamics. In the coming decade, simulations of the MPV must be improved. 
    more » « less
  4. Abstract

    This work presents an analysis of seasonal variations of medium‐scale perturbations (∼500 to ∼5,700 km) spanning altitudes from 90 to 250 km using temperature and wind measurements made by the Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) instrument onboard the Ionospheric Connection Explorer (ICON) in the latitude range of 0°–40°N during 2020–2021. Both medium‐scale perturbations (MSP) in temperature and winds below ∼120 km show semi‐annual variations, whereas annual variations of MSP for winds become dominant between 160 and 250 km. The largest wind MSP was observed at ∼110–120 km throughout the year. Spatial variations of MSP at 90–250 km do not show clear geographic patterns in either temperature or wind. Our analysis suggests both seasonal variations of MSP between 90 and 250 km altitudes are influenced by variation on both the sources of MSP and changes in the background wind.

     
    more » « less
  5. Abstract

    We report the first lidar observations of regular occurrence of mid‐latitude thermosphere‐ionosphere Na (TINa) layers over Boulder (40.13°N, 105.24°W), Colorado. Detection of tenuous Na layers (∼0.1–1 cm−3from 150 to 130 km) was enabled by high‐sensitivity Na Doppler lidar. TINa layers occur regularly in various months and years, descending from ∼125 km after dusk and from ∼150 km before dawn. The downward‐progression phase speeds are ∼3 m/s above 120 km and ∼1 m/s below 115 km, consistent with semidiurnal tidal phase speeds. One or more layers sometimes occur across local midnight. Elevated volume mixing ratios above the turning point (∼105–110 km) of Na density slope suggest in situ production of the dawn/dusk layers via neutralization of converged Na+layers. Vertical drift velocity of TINa+calculated with the Ionospheric Connection Explorer Hough Mode Extension tidal winds shows convergent ion flow phases aligned well with TINa, supporting this formation hypothesis.

     
    more » « less